
Bitwise Convolution
Brian	McMillin	

Abstract
A	 series	 of	 observa1ons	 concerning	 convolu1on	 with	 respect	 to	 image	 processing	 are	
presented.	

The	inten1on	is	to	provide	background	for	the	development	of	more	appropriate	hardware	and	
so=ware	 for	Convolu1onal	Neural	Networks.	 	This	 includes	 reduc1ons	 in	complexity,	memory	
requirements,	computa1onal	requirements	and	processing	1me	and	power	consump1on.	

TBD	

Table of Contents
Abstract	 1
--
Table of Contents	 1
--
Convolution	 2
--
Filter Shapes	 2

Concerning Image Boundaries	 4

Stochastic Processing	 4

Reductio ad Absurdum	 5

Input Preparation	 6
--
Memory Addressing	 6

Serialization	 7
--
Strides	 7
--
Data Structures	 10
--
Programming Language Limitations	 15

Image Data Organization	 16

Binary Convolution	 17

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 1 20 (c) 2020 Brian McMillin

Convolution
The	purpose	of	convolu1on	is	to	transform	an	input	stream	(perhaps	an	image)	into	an	output	
stream,	 with	 modifica1ons	 based	 on	 a	 set	 of	 filter	 parameters.	 	 In	 par1cular,	 these	 filter	
parameters	are	applied	based	on	certain	aspects	of	(small)	regions	of	the	input.	 	Applying	the	
filter	universally	across	the	en1re	input	is	what	generates	the	output.	

Tradi1onally,	we	tend	to	think	of	input	images	as	presented	as	a	row,	column	sequence	of	pixels.		
A	filter	might	be	applied	to	a	3x3	subset	of	pixels,	and	generate	a	single	output	pixel.		The	filter	
would	be	conceptually	moved	across	the	en1re	input	image	to	generate	an	output	image.	

A	 grayscale	 input	 image	might	 be	 represented	 by	 a	 sequence	 of	 bytes	 represen1ng	 per-pixel	
intensi1es.		A	filter	for	such	an	input	might	consist	of	a	3x3	set	of	scale	factors.		The	scale	factors	
would	be	mul1plied	by	the	appropriate	input	pixel	values;	the	sum	of	these	products	would	be	
the	desired	output	pixel	value.	

This	 type	 of	 convolu1on	 works	 well	 enough	 to	 produce	 some	 useful	 (or	 at	 least	 pleasing)	
photographic	effects	such	as	Sharpen	and	Blur.	

Filter Shapes
In	general	a	filter	(or	more	precisely	a	filter	kernel)	consists	of	a	square	matrix	of	scale	factors.			

The	 range	 of	 these	 scale	 factors	 is	 chosen	 based	 on	 matrix	 size,	 range	 of	 input	 values,	 and	
desired	range	of	output	values.	 	Specifically,	given	a	quan1ty	of	input	values,	each	with	a	given	
range,	we	want	to	ensure	that	the	sum-of-products	output	does	not	overflow.	

The	 rela1ve	 values	 of	 the	 elements	within	 the	filter	 conveys	 the	desired	filter	 proper1es,	 for	
example	edge	detec1on.	

The	use	of	a	3x3	filter	 is	a	common	choice	which	creates	a	result	by	accumula1ng	the	sum	of	
nine	separate	mul1ply	opera1ons.		Even	in	the	simplis1c	case	of	8-bit	grayscale	image	inputs,	it	
becomes	necessary	to	use	some	type	of	floa1ng	point	representa1on	to	perform	the	required	
mul1ply-accumulate	opera1on	without	 loss	of	precision.	 	Remember	 that	 the	 scale	 factors	 in	
the	filter	will	be	signed	values	 thus	allowing	a	par1cular	product	 to	make	either	a	posi1ve	or	
nega1ve	contribu1on	to	 the	final	 sum.	 	Maintaining	 the	desired	dynamic	 range	 in	 the	output	
becomes	even	more	problema1c	if	the	desired	filter	proper1es	call	for	a	sparse	matrix	(i.e.,	one	
with	lots	of	zero	elements).	

Deep Neural Networks	 18

Inference	 18
--
Training	 19

Hardware Considerations	 19

Summary	 20---

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 2 20 (c) 2020 Brian McMillin

There	are	alterna1ves	 to	 the	3x3	matrix	 that	 can	be	both	more	computa1onally	efficient	and	
more	effec1ve	in	accomplishing	the	desired	task.	

Consider:	 	 the	 en1re	 purpose	 of	 a	 convolu1onal	 filter	 is	 to	 detect	 regions	 of	 interest	 and	
produce	 an	output	 that	 either	 enhances	 or	 eliminates	 those	 interes1ng	 features.	 	We	would	
prefer	to	do	as	liUle	computa1on	as	possible	to	reach	this	goal.	

INPUT 3x3 Filter Alternative Filters
V V V V V V V . . . F F F F F F F F F
V V V V V V V . . . F F F F F F F
V V V V V V V . . . F F F F F F F F F
V V V V V V V . . .
V V V V V V V . . .

The	 tradi1onal	 3x3	 filter	 uses	 all	 nine	 input	 pixels	 within	 its	 region	 to	 produce	 the	 resul1ng	
output	pixel.	 	Nine	is	not	a	nice	number	if	you	are	used	to	trying	to	make	efficient	u1liza1on	of	
general-purpose	hardware.		So.		Are	all	nine	of	those	input	pixels	actually	necessary	to	produce	
acceptable	results?		Well.	The	filter	is	intended	to	detect	“features”	in	the	input.		“features”	are	
different	 from	 their	 surroundings.	 The	 center	 pixel	 in	 the	 3x3	matrix	 is	 the	 single	 pixel	most	
likely	to	be	highly	correlated	with	the	surrounding	pixels.	 	Therefore,	it	is	least	likely	to	make	a	
meaningful	 contribu1on	 to	 the	 output.	 	 By	 simply	 ignoring	 it	 we	 can	 reduce	 our	 number	 of	
mul1plies	by	12.5%.	 	Even	beUer,	we	make	the	number	of	filter	elements	eight	instead	of	nine,	
thus	easing	our	power-of-two	anxiety.	

What	else	can	we	do?		Suppose	we	call	this	op1on	“8	out	of	3x3”.		How	about	going	further	and	
trying	for	a	“4	out	of	3x3”?	 	Two	examples	of	possible	versions	are	shown	in	the	diagram.	 	The	
u1lity	 of	 such	 things	 can	 only	 be	 determined	 via	 real-world	 examples.	 I	 leave	 this	 to	 the	
interested	 reader.	 The	 specific	 ques1on	 to	 be	 answered	 is:	 Does	 the	 56%	 reduc1on	 in	
computa1onal	requirements	make	up	for	the	loss	of	precision	in	the	result?	

Some	applica1ons	aUempt	to	use	5x5	filters.			

INPUT 5x5 Filter Alternative Filters
V V V V V V V . . . F F F F F F F F
V V V V V V V . . . F F F F F F F F
V V V V V V V . . . F F F F F F F F F
V V V V V V V . . . F F F F F F F F
V V V V V V V . . . F F F F F F F F

The	diagram	also	includes	a	pair	of	“8	out	of	5x5”	possibili1es.		The	poten1al	advantage	here	is	
that	a	small	number	of	computa1ons	could	generate	a	result	based	on	a	sampling	of	input	pixels	
from	a	 larger	area.	 	This	might,	 in	some	instances,	yield	similar	results	while	using	68%	fewer	
mul1plies.	

There	is	a	tendency	to	want	to	use	only	filters	that	have	odd	dimensions.		The	desire	is	to	match	
the	output	pixel	with	the	“center”	pixel	of	the	input,	and	to	have	symmetric	inputs	surrounding	
that	loca1on.		This	is	not	a	requirement,	however.	

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 3 20 (c) 2020 Brian McMillin

We	could	just	as	easily	use	a	4x4	input	area,	for	example.	

INPUT 4x4 Filter
V V V V V V V . . . F F F F
V V V V V V V . . . F F F F
V V V V V V V . . . F F F F
V V V V V V V . . . F F F F
V V V V V V V . . .

As	long	as	we	are	consistent	in	choosing	an	output	pixel	loca1on	rela1ve	to	the	input	area	we	
have	sa1sfied	the	actual	requirements	of	the	convolu1on.	

This	also	has	the	advantage	of	sa1sfying	the	power-of-two	dimension	requirement	for	efficient	
hardware	u1liza1on.	

Concerning Image Boundaries
Usually	it	is	deemed	desirable	for	the	output	of	a	filter	opera1on	to	be	of	the	same	size	as	the	
input.	 	The	defini1on	of	 the	convolu1onal	filter	would	 require	 taking	 inputs	 from	outside	 the	
row,	column	boundaries	of	the	input	in	order	to	accomplish	this.	

A	 crude	 solu1on	 to	 this	 problem	 would	 be	 to	 provide	 padding	 (possibly	 with	 zeroes)	
surrounding	 the	 input	 image.	 	 This	 arbitrary	 choice	 can	 cause	 ar1facts	 at	 the	 edges	 of	 the	
output.		A	beUer	solu1on	would	be	to	pad	with	duplicates	of	the	edge	pixels.		This	would	be	an	
improvement	based	on	the	assump1on	that	the	pixels	just	outside	the	input	would	be	expected	
to	be	highly	correlated	with	the	pixels	just	inside	the	boundary.			

Obvious	 ar1facts	 on	 the	 edges	 of	 a	 Photoshop	 image	 would	 generally	 be	 unacceptable.		
Ar1facts	 in	 the	 edge	 instances	 of	 convolu1ons	 used	 in	 neural	 networks	 are	 (most	 likely)	
irrelevant.	 	 The	 training	 of	 the	 network	 should	 cause	 them	 to	 be	 effec1vely	 invisible.		
Specifically,	the	degrada1on	should	be	well	below	the	noise	level	introduced	by	other	aspects	of	
the	 processing.	 	 One	 should	 expect	 that	 the	 Neural	 Network	 to	 be	 fully	 able	 to	 extract	
meaningful	signal	from	the	input	in	spite	of	these	minor	ar1facts.	 	And	slowing	the	processing	
down	to	try	to	patch	these	infrequent	instances	is	likely	completely	counter-produc1ve.	

Stochastic Processing
In	several	places	I	have	pointed	out	the	fact	that	real-world	images	are	highly	correlated	from	
pixel	to	pixel.	 	This	statement	applies	not	only	to	the	input	image,	but	to	the	convolved	output	
image	as	well.			

This	high	correla1on	 in	 the	output	means	 that	 it	might	not	be	necessary	 to	actually	compute	
every	pixel	in	the	output.	 	Specifically,	a	stochas1c	mechanism	could	be	used	to	(on	a	random	
basis)	 simply	 duplicate	 the	 previous	 output	 pixel	 instead	 of	 compu1ng	 the	 new	 value	 from	
scratch.			

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 4 20 (c) 2020 Brian McMillin

One	could	 thus	 reduce	the	computa1onal	workload	with	a	slight	 reduc1on	 in	 the	accuracy	of	
the	result.	 	The	 important	 thing	here	 is	 that	 the	computa1on	requirements	could	be	reduced	
much	faster	than	the	reduc1on	in	result	quality.	

Given	a	random	number	generator,	 the	probability	of	 the	Compute	vs.	Duplicate	result	would	
establish	the	desired	reduc1on	in	computa1onal	effort.	

Reductio ad Absurdum
As	we	have	seen,	the	range	of	input	pixel	values,	the	number	of	filter	elements	and	the	desired	
dynamic	range	of	the	output	must	all	be	carefully	chosen.	 	The	goal	is	to	retain	the	maximum	
amount	of	data,	without	trunca1on	or	clipping,	while	using	the	minimum	resources	in	terms	of	
both	memory	and	computa1on.	

The	 choice	 of	 each	of	 these	 factors	 is	 non-trivial.	 There	 is	 a	 tendency	 to	make	 the	hardware	
implementa1ons	 as	 general-purpose	 as	 possible	 because	 no	 one	 is	 certain	 what	 the	 actual	
requirements	might	be	for	a	par1cular	future	applica1on.	

Since	we	have	no	 idea	what	 the	 actual	 numerical	 requirements	 are	 for	 filter	 parameters	 and	
Mul1ply-Accumulator	precision,	let	us	instead	look	at	the	conceptual	minimum	requirements.			

What	is	the	least	amount	of	precision	that	we	can	get	by	with		and	s1ll	achieve	useful	results?	

Explora1on	of	the	required	precision	has	taken	many	forms.		Typical	is	the	use	of	32-bit	floa1ng	
point	weigh1ng	factors,	o=en	with	the	sum-of-products	accumulated	into	a	64-bit	value	(to	try	
to	 reduce	 roundoff	 errors)	 before	 producing	 a	 32-bit	 floa1ng-point	 result.	 	 Recognizing	 the	
extravagance	of	these	GPU-based	implementa1ons,	considera1on	has	been	given	to	the	use	of	
scaled	32-bit	integers	or	even	16-bit	values.	 	Clever	organiza1on	of	8-bit	values	into	a	floa1ng-
point	representa1on	has	been	tried.	

Each	 of	 these	 approaches	 has	 been	 documented	 by	 their	 authors	 and	 the	 tradeoffs	 in	 result	
quality	noted.	 	Unfortunately,	accurate	understanding	of	these	research	results	is	hampered	by	
the	 tes1ng	 criteria.	 	 Real-world	 applica1ons	 are	 so	 widely	 divergent	 that	 it	 is	 essen1ally	
impossible	 to	 understand	 the	 effect	 of	 a	 par1cular	 quality	 metric	 in	 a	 par1cular	 target	
applica1on.	 	 The	only	way	 to	achieve	an	accurate	analysis	 is	 to	 fully	 implement	and	debug	a	
par1cular	approach	using	real	data	from	the	target	environment.	

Of	par1cular	 interest	to	us	at	this	point	 is	the	observa1on	that	each	filter	element	causes	the	
corresponding	input	pixel	to	increase	or	decrease	the	accumulated	sum.		This	means	that,	in	the	
limit,	we	could	consider	all	elements	of	the	filter	kernel	as	taking	on	values	of	either	-1	or	+1.		
This	is	the	effect	that	we	could	get	from	a	truly	binary	filter	using	only	one	bit	elements.	

This	is	the	approach	used	by	XNOR-net	in	their	Binary	Convolu1onal	Neural	Networks.	

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 5 20 (c) 2020 Brian McMillin

Further	simplifica1on	of	the	convolu1onal	process	is	achieved	by	making	the	input	image	into	a	
series	 of	 1-bit	 pixels.	 	 This	 allows	 the	 input-pixel	 and	 filter-element	 to	 be	 operated	 on	 using	
using	pure	binary	opera1ons	such	as	AND	and	XOR.		

The	 use	 of	 binary	 opera1ons	 eliminates	 the	 need	 for	 floa1ng	 point	 computa1ons	 and	 GPU	
implementa1ons.		The	use	of	binary	data	reduces	the	memory	requirements	for	the	the	system,	
the	addressing	complexity	and	the	associated	subsystem	bandwidth.	

Clever	 use	 of	 Binary	 Convolu1on	 allows	 the	 designer	 to	 implement	 extremely	 high	 speed	
inference	 opera1ons.	 	 The	 speed	 and	 simplicity	 of	 the	 approach	 can	 form	 the	 basis	 of	 layer	
interconnec1ons	 in	Deep	Neural	Networks.	 	The	 feasibility	of	a	greater	number	of	opera1ons	
and	lower	per-filter	memory	usage	means	that	deeper	networks	can	be	envisioned	for	a	given	
model	size	(memory	usage).	

The	 binary	 filters	 can	 be	 viewed	 as	 “self-compressed”	 and	 not	 require	 the	 exo1c	 data	
compression	techniques	used	to	make	floa1ng-point	models	fit	into	a	manageable	space.	

Input Preparation
Since	we	are	ul1mately	interested	in	the	applica1on	of	these	convolu1onal	techniques	to	Neural	
Networks,	we	are	not	concerned	with	the	prepara1on	of	 the	“analog”	 input	 image	data.	 	We	
leave	that	ini1al	step	for	future	research.			

A	few	hints	might	include:	
• Neural	networks	are	REALLY	good	at	handling	mul1ple	interconnected	layers,	therefore	the	
analog	input	need	not	be	converted	to	just	one	binary	input	image.			

• Use	 some	 image-wide	 or	 image-sequence	 (temporal)	 informa1on	 to	 establish	 analog	
thresholds	for	conver1ng	individual	pixels	to	single	bit	values	prior	to	crea1ng	a	binary	input	
channel.	

Memory Addressing
One	 of	 the	 biggest	 problems	 with	 the	 implementa1on	 of	 convolu1onal	 filters	 on	
“ordinary”	 (meaning	 von	 Neumann	 style)	 computers	 is	 the	 technique	 used	 for	 memory	
addressing.	 	Memory	addresses	are	 treated	as	numbers	and	arithme1c	opera1ons	 (using	 the	
CPU)	are	performed	to	calculate	offsets	within	data	structures.	

The	input	image	is	stored	as	a	sequence	of	rows	of	consecu1ve	pixels.		Each	of	these	pixels	may	
have	mul1ple	components	(red,	green,	blue,	for	example).		Each	of	these	components	may	need	
to	 be	 fed	 to	 a	 different	 kernel	 within	 the	 convolu1onal	 filter.	 	 In	 order	 to	 perform	 the	
convolu1on	opera1on,	each	of	these	elements	must	be	located	(through	computa1ons	carried	
out	by	the	processor)	and	the	resul1ng	address	passed	to	the	memory	subsystem.	

The	memory	subsystem	must	be	able	to	retrieve	the	desired	data.	 	The	sequence	of	addresses	
presented	 form	 an	 essen1ally	 random	 paUern	 as	 far	 as	 the	 memory	 system	 is	 concerned.		
Some1mes	there	are	near-sequen1al	accesses,	some1mes	there	are	widely	separated	accesses,	
and	occasionally	there	are	accesses	to	recently	used	loca1ons.		This	creates	many	opportuni1es	

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 6 20 (c) 2020 Brian McMillin

for	 a	 hardware	 designer	 to	 develop	 crea1ve	 caching	 architectures	 to	 add	 a	 fast	 layer	 to	
otherwise	slow	main-memory	accesses.	

Key	 to	 gemng	 speed	 out	 of	 the	 memory	 subsystem	 would	 be	 the	 ability	 of	 the	 so=ware	
algorithm	 to	 issue	 pre-fetch	 instruc1ons,	 without	 processing	 penalty,	 to	 load	 the	 cache	
subsystem	in	an1cipa1on	of	the	essen1ally	random	reads	that	will	be	needed	shortly.	 	This	will	
allow	the	caches	to	be	smaller	that	they	typically	are	for	general-purpose	use	now.		Recognizing	
that	as	the	filter	“moves”	across	the	image,	certain	pixels	will	not	be	needed	again	and	others	
will	s1ll	be	used	as	part	of	the	next	scan	 line	 is	something	that	the	so=ware	algorithm	is	well	
aware	of	but	that	would	be	essen1ally	impossible	to	automate	in	hardware.	

The	memory	access	paUern	of	a	typical	convolu1on	algorithm	represents	an	almost	worst	case	
situa1on	as	far	as	the	memory	system	performance	is	concerned.	

Key	failings	with	the	typical	architecture	are	that		
	 1.	More	1me	is	spent	compu1ng	addresses	than	performing	the	algorithm	
	 2.	Memory	accesses	drag	along	bunches	of	unused	data	adjacent	to	the	desired	item	
	 3.	Hardware	that	pre-fetches	or	retains	an1cipated	data	usually	guesses	wrong	

Serialization
Convolu1on	is	a	fundamentally	parallel	concept.	 	The	descrip1on	of	“moving	a	filter	across	an	
image”	 is	a	simplifica1on	to	allow	easy	descrip1on	of	the	underlying	process.	 	 In	reality	every	
output	 pixel	 could	 be	 released	 as	 soon	 as	 the	 corresponding	 handful	 of	 input	 pixels	 became	
available.	

In	the	case	of	real-world	implementa1ons	we	are	o=en	constrained	by	the	inherent	slowness	of	
a	 camera	 interface.	 	 Data	 becomes	 available	 for	 processing	 at	 (for	 example)	 30	 frames	 per	
second.	 	Applying	a	filter	 to	 this	 stream	should	be	performed	con1nuously,	using	very	simple		
processing	hardware.		The	desired	output	frame	should	be	streamed	at	the	same	bit	rate	as	the	
input,	only	with	a	delay	of	a	few	scan	lines	at	most.	

This	is	quite	different	from	the	tradi1onal	“filter	the	image”	approach	in	which	an	en1re	image	
is	loaded	into	memory	and	the	the	fastest	available	processor	(maybe	a	GPU)	is	unleashed.		The	
processor	 speed	 is	 cri1cal	 here	 because	 many	 filters	 may	 need	 to	 be	 run	 and	 all	 of	 the	
processing	1me	is	adding	latency	to	the	results.	

Recognizing	 the	 conceptual	 parallelism	 and	 implemen1ng	 it	 in	 the	 lowest	 levels	 of	 a	 serial	
stream	 process	 allows	 us	 to	 reduce	 the	 hardware	 requirements	 and	 level	 out	 the	 CPU	 load,	
memory	access	requirements	and	power	consump1on.	

Strides
For	object	detec1on	and	recogni1on	tasks	it	is	desirable	that	a	par1cular	filter	be	able	to	detect	
a	target	paUern	at	a	range	of	scales	within	the	image.	 	Simple	filters	as	described	so	far	would	
be	incapable	of	this	-	One	filter	for	each	size	paUern	would	be	required.	

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 7 20 (c) 2020 Brian McMillin

It	is	possible	to	approximate	the	desired	scale	independence	by	rescaling	the	input	image.	 	I.e.	
change	the	input	size	un1l	it	matches	that	required	by	the	detector.	

A	simple	way	to	approximate	the	required	scaling	is	to	use	strides	as	the	input	data	is	fed	into	
the	system.	 	The	filters	described	so	far	can	be	considered	to	have	a	stride	length	of	1.	 	That	is	
the	 pixels	 fed	 into	 the	 filter	 are	 all	 directly	 adjacent	 to	 each	 other	 and	 there	 is	 a	 1-to-1	
rela1onship	between	the	dimensions	of	the	input	and	out	images..		

A	 stride	 length	of	 2	 could	describe	a	 system	 in	which	only	 the	output	 from	every-other	filter	
filter	across	a	row	and	every-other	row	would	be	used	to	compose	the	output.	This	provides	a	
reduc1on	in	the	number	of	calcula1ons	and	the	size	of	the	output	by	a	factor	of	four.	

The	next	layer	would	have	less	data	to	manipulate	and	would	use	filters	trained	on	this	scaled-
down	data.	

An	alterna1ve	implementa1on	of	the	stride	concept	would	use	more	widely	spaced	input	pixels	
to	the	filter,	but	run	the	same	number	of	opera1ons	and	generate	the	same	number	of	output	
pixels	as	before.	

INPUT 3x3 Filter 3x3 Stride 2
V V V V V V V . . . F F F F F F
V V V V V V V . . . F F F
V V V V V V V . . . F F F F F F
V V V V V V V . . .
V V V V V V V . . . F F F
V V V V V V V . . .
V V V V V V V . . .

The	filter	slides	row-by-row,	one	pixel	at	a	1me	as	before	but	the	computa1ons	are	performed	
on	more	widely	spaced	input	pixels.	 	This	would	achieve	an	effect	similar	to	processing	with	a	
sparse	 5x5	 filter.	 	 The	 poten1al	 benefit	 of	 such	 an	 arrangement	 is	 that	 the	 memory	 access	
hardware	 would	 be	 able	 to	 more	 efficiently	 select	 the	 input	 data	 required	 for	 each	 filter	
computa1on.	 	 And	 the	 a	 priori	 knowledge	 of	 the	 loca1ons	 of	 the	 zeroes	 in	 the	 filter	 would	
reduce	the	size	of	the	filter	array	itself.	

These	 two	 concepts	 involving	 input	 and	 output	 strides	 could	 certainly	 be	 combined	 in	 a	
par1cular	 implementa1on.	 	 The	 stride	 [input,	 output]	 tuple	 would	 be	 part	 of	 the	 filter	
descrip1on.		Hence,	one	would	refer	to	filter	shape	as	“3x3 stride [1,1]”,	for	example.	

Ul1mately,	 the	 same	 amount	 of	 input	 data	 would	 be	 presented	 to	 the	 system	 in	 all	 cases.	
Efficiency	is	gained	through	op1miza1on	of	the	redundant	data	movements	and	computa1ons	
required	as	the	output	is	produced.	

It	 is	expected	 that	many	different	output	 images	would	be	produced	“simultaneously”	with	a	
single	pass	through	the	input	image.		This	parallel	applica1on	of	mul1ple	filters	would	minimize	
both	memory	requirements	and	computa1onal	 latency.	 	The	resul1ng	mul1ple	outputs	would	
be	presented	to	the	next	layer	of	the	deep	network.	

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 8 20 (c) 2020 Brian McMillin

Obviously,	 these	 concepts	 would	 apply	 to	 the	 convolu1ons	 used	 in	 all	 the	 layers	 and	 layer	
interconnects	of	a	deep	net,	not	just	the	ostensible	“input”	layer	that	we	have	been	referring	to.	

Our	 present	 interest	 pertains	 to	 algorithms	 that	 implement	 convolu1ons	 in	 binary	 neural	
networks.	 This	 amounts	 to	 organizing	 the	 bits	 appropriately	 and	 expedi1ously	 for	 processing	
with	simple	bitwise	opera1ons.	

One	of	the	limita1ons	of	this	pure-binary	environment	is	that	the	filter	elements	must	exist	 in	
only	two	possible	states:	we	have	chosen	{-1,	+1}.	 	This,	unfortunately,	means	that	there	is	no	
possibility	 of	 a	 pure-zero	 filter	 element.	 	 This	 is	 not	 necessarily	 harmful	 -	 it	 does	 require	 a	
certain	amount	of	revision	to	our	typical	thought	processes.		Specifically,	it	means	that	the	filter	
elements	can	never	form	a	sparse	matrix.	

A	certain	amount	of	this	limita1on	can	be	addressed	using	the	stride	concept.		A	given	filter	can	
cover	a	larger	input	area	and	yet	retain	the	smaller	storage	and	processing	requirements	offered	
by	a	sparse	matrix.		And	we	retain	the	advantages	of	the	SIMD	parallelism	described	herein.	

Given	a	proper	training	environment,	one	expects	that	even	more	complicated	combina1ons	of	
input	 /	 filter	 /	 output	 organiza1ons	 would	 be	 possible.	 	 For	 example,	 the	 well-known	 filter-
compression	 technique	 of	 using	 a	 bit-vector	 to	 indicate	 the	 loca1on	 of	 zeroes	 in	 the	matrix,	
followed	 by	 the	 (small)	 number	 of	 actual	 non-zero	 element	 coefficients.	 	 We	 expect	 that	
different	 filter	 shapes,	 different	 stride	 parameters,	 different	 paUerns	 of	 zero-elements	 and	
different	 op1ons	 for	 controlling	 stochas1c	 computa1on	 are	 all	 learnable	 parameters	 for	 an	
advanced	Machine	Learning	environment.	

Non-Integer Strides

As	 described,	 an	 integer	 usually	 describes	 the	 interval	 between	 elements.	 	 This	 is	 generally	
convenient	but	represents	a	significant	limita1on	in	the	ability	to	control	
• The	rela1ve	size	of	the	output	frame	compared	to	the	input	frame	
• The	scale	of	the	filter	rela1ve	to	the	input	frame	
• The	amount	of	overlap	between	successive	applica1ons	of	the	filter	to	the	input	frame	

From	a	hardware	standpoint	one	could	envision	simple	strides	being	implemented	in	the	form	
of	a	shi=	register	for	the	incoming	data	and	a	counter	to	select	every	Nth	element.	

It	 would	 be	 possible	 to	 enhance	 the	 versa1lity	 of	 this	 stride-genera1on	 mechanism	 by	
implemen1ng	an	addi1onal	 second	counter	with	a	different	period.	 	 The	 interac1on	of	 these	
two	counter	periods	would	produce	a	syncopa1on.	

The	resul1ng	complex	period	between	selected	input	elements	would	allow	for	a	greater	choice	
for	all	three	of	the	concerns	listed	above.	

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 9 20 (c) 2020 Brian McMillin

Data Structures
As	men1oned	before	at	some	length,	addressing	data	for	convolu1on	algorithms	is	problema1c.		
The	essen1ally	random	access	paUern	poses	a	challenge	for	most	hardware.	

It	 is	 incumbent	 on	 the	 algorithm	designer	 to	 create	 data	 structures	 that	minimize	 the	 access	
challenges	to	the	underlying	hardware.	 	The	use	of	single-bit	opera1ons	is	a	tremendous	boon	
to	algorithm	design.		Given	hardware	that	supports	(for	example)	64-bit	integer	representa1ons	
and	associated	binary	opera1ons	we	have	the	opportunity	to	perform	64	binary	opera1ons,	in	
parallel,	during	a	single	instruc1on	cycle.		This	is	almost	painless	Single	Instruc1on	Mul1ple	Data	
(SIMD).	 	All	we	have	to	do	is	arrange	to	get	the	data	into	the	correct	ini1al	configura1on.	 	And	
not	shoot	ourselves	in	the	foot	by	having	to	resort	to	some	kind	of	opera1on	on	single	bits	or	bit	
groups	someplace	in	the	algorithm.	

The	tradi1onal,	CS-101,	concept	of	memory	addressing	is	deeply	ingrained.	 	“Everyone”	knows	
that	a	memory	address	accesses	a	word.		You	perform	arithme1c	on	words	and	save	the	results	
at	addresses.	 	Unfortunately,	 this	deep	convic1on	cannot	help	us	when	we	are	 trying	 to	deal	
with	bitwise	opera1ons	over	pixel	arrays.	

We	can	perform	massively	parallel	bitwise	opera1ons	on	64-bit	words,	but	 if	we	 try	 to	use	a	
hardware	arithme1c	opera1on	such	as	ADD	we	will	destroy	our	carefully	groomed	parallel	data.		
What	 we	 need	 is	 the	 necessary	 arithme1c	 opera1ons	 that	 operate	 on	 a	 set	 of	 registers	 but	
retain	the	bit-at-a-1me	separa1on	within	the	registers.	

Consider.	 	We	have	 two	single-bit	binary	values	A	and	B.	 	We	wish	 to	add	them	and	get	 two	
result	bits	which	we	will	call	Sum	and	Carry.		Grade-school	stuff.	

A 0 . . .
B 1 . . .
===========
Carry 0 . . . This is A AND B
Sum 1 . . . This is A XOR B

Now	suppose	we	have	8	pairs	of	single-bit	binary	values.		We	want	to	get	the	sums	of	each	pair.	

A 0 0 1 1 1 0 1 0
B 1 0 1 0 1 1 0 0
===========
Carry 0 0 1 0 1 0 0 0 This is A AND B
Sum 1 0 0 1 0 1 1 0 This is A XOR B

We	have	computed	eight	 single-bit	binary	addi1on	opera1ons	using	 two	machine	opera1ons,	
neither	of	which	was	an	add.	 	Obviously,	given	hardware	with	64-bit	 integer	registers,	we	can	
scale	this	up	and	achieve	effec1ve	speeds	found	in	massively	parallel	architectures.	

Furthermore,	 these	 simple	binary	opera1ons	 should	be	 the	 fastest	available	 instruc1ons	on	a	
given	set	of	hardware	 	 -	because	 there	 is	no	carry	propaga1on	such	as	would	be	 found	 in	an	

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 10 20 (c) 2020 Brian McMillin

integer	 ADD	 instruc1on.	 	 Whether	 ADD	 instruc1ons	 actually	 become	 slower	 due	 to	 carry	
propaga1on	depends	on	individual	processor	clock	u1liza1on.	 	But	it	makes	the	point	that	the	
hardware	ADD	instruc1on	and	all	of	 its	carry-propaga1on	hardware	is	not	strictly	necessary	 in	
the	first	place.	

Bit Counting (Horizontal)

Now,	consider	that	at	some	point	in	our	binary	convolu1on	algorithm	we	have	a	set	of	bits	and	
we	wish	to	count	the	number	of	1’s.	 	A	naive	approach	might	be	to	use	a	program	with	shi=,	
condi1onals	and	add	to	create	the	sum.			

Input Bits 1 0 1 1 0 1 0 1 Output Sum 0 1 0 1

An	improved	algorithm	might	use	a	sequence	of	shi=,	mask	and	add	opera1ons	in	a	fast	binary-
tree	style	approach,	like	this:	

Input Bits 1 0 1 1 0 1 0 1

Mask Odd Bits 0 0 0 1 0 1 0 1
Shift and Mask 0 1 0 1 0 0 0 0 (1 bitwise shift right)
Add 0 1 1 0 0 1 0 1 Sum of bits in each pair

Mask Odd Pairs 0 0 1 0 0 0 0 1
Shift and Mask 0 0 0 1 0 0 0 1 (2 bitwise shifts right)
Add 0 0 1 1 0 0 1 0 Sum of bits in each quad

Mask Odd Quads 0 0 0 0 0 0 1 0
Shift and Mask 0 0 0 0 0 0 1 1 (4 bitwise shifts right)
Add 0 0 0 0 0 1 0 1 Sum of bits in each byte

Thus,	the	8-bit	example	illustrated	here	(giving	a	4-bit	sum)	could	be	implemented	as	8	parallel	
computa1ons	using	the	same	number	of	instruc1ons.	 	Of	course,	this	s1ll	uses	the	processor’s	
64-bit	integer	ADD	instruc1on,	but	we	are	assured	that	no	carry	within	the	Sum	will	propagate	
past	4	bits.		This	may	allow	some	increased	performance,	depending	on	the	hardware.	

This	example	presumes	that	we	have	somehow	goUen	all	of	the	required	input	bits	packed	into	
a	 single	word	and	 that	we	want	 the	 resul1ng	sum(s)	 to	be	 in	a	 tradi1onal	power-of-two	field	
grouping	within	a	result	word.		

Actual	instruc1on	usage	for	doing	this	8-bit	coun1ng	opera1on	would	be:	
	 (6)	AND	opera1ons	for	the	required	bit	masking	
	 (7)	SHIFT	opera1ons	for	bitwise	posi1oning	
	 (3)	ADD	opera1ons	to	compute	the	sum	with	hardware	carry	as	needed	
Thus,	for	64-bit	hardware	with	this	type	of	SIMD	opera1on	we	can	achieve	the	required	sum-of	
bits	in	an	average	of	two	machine	cycles	per	result.	

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 11 20 (c) 2020 Brian McMillin

Perhaps	 we	 can	 use	 the	 insights	 of	 the	 previous	 bitwise	 separa1on	 concept,	 including	 the	
elimina1on	of	the	hardware	ADD	instruc1on,	to	achieve	even	greater	effec1ve	speeds.	

Bit Counting (Vertical)

Suppose	that	we	configured	the	inputs	and	outputs	into	a	set	of	12	registers	like	this:	

A 1 . . . input bits in separate registers
B 0 . . .
C 1 . . .
D 1 . . .
E 0 . . .
F 1 . . .
G 0 . . .
H 1 . . .

s8 0 . . . result bits in separate registers
s4 1 . . .
s2 0 . . .
s1 1 . . .

		
The	tricks	to	this	algorithm	are:	
	 1.	We	use	the	previous	idea	of	XOR	to	sum	two	binary	values	and	AND	to	get	the	carry.	
	 2.	We	recognize	that	processing	the	input	bits	A	to	H	is	an	increment	-	not	really	an	add.	
	 3.	We	know	a	priori	how	far	the	carry	could	propagate,	so	we	trim	unnecessary	steps.	
	 4.	We	explicitly	set	the	value	of	each	s?	the	first	1me	we	use	it	-	no	extra	ini1aliza1on.	

Incremen1ng	a	4-bit	result	in	this	configura1on	by	brute	force	7	1mes	might	require	as	many	as	
49	opera1ons.		By	suppressing	the	unnecessary	carry-propaga1ng	opera1ons	we	can	reduce	this	
to	a	total	of	30	opera1ons.			

Using	this	technique	with	64-bit	register	opera1ons	we	can	compute	the	sum	of	64	8-bit	values	
in	 30	 clock	 cycles.	 	 This	 is	 effec1vely	 2.1	 summa1ons	 per	 clock	 cycle	 -	 more	 than	 a	 4x	
improvement	over	the	previous	algorithm.	

The	algorithm	presented	here	should	clarify	the	required	sequence	of	machine	instruc1ons.	 	 I	
have	named	3	temporary	registers	c1,	c2	and	c4	to	hold	carry-out	values.		Real	implementa1ons	
should	 be	 able	 to	 reduce	 the	 register	 requirements	 by	 folding	 the	 temporaries	 into	 other	
unused	registers.	

The columns are the destination registers. The sequence of operations, read left to right and
top to bottom will compute the desired results.

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 12 20 (c) 2020 Brian McMillin

As	with	all	true	SIMD	architectures	the	opera1on	is	totally	determinis1c.		There	are	no	branches	
in	the	code	and	all	“condi1onal”	opera1ons	are	accomplished	strictly	through	the	binary	data.		
Thus,	 the	 program	 is	 a	 straight-through	 linear	 sequence	 of	 opera1ons	 with	 no	 loops.	 	 This	
means	that	the	hardware	instruc1on	accessing,	decoding	pipeline	and	caching	should	have	the	
easiest	possible	1me.		Again,	this	brings	some	of	the	highly-touted	features	of	GPU	architecture	
to	a	much	simpler	CPU-based	algorithm.	

Increment (Vertical)

Let	us	think	about	a	binary	increment	opera1on.	 	We	would	like	it	to	be	condi1onal,	in	that	we	
have	an	addend	A	which	determines	whether	we	increment	or	not.	

Sum 0 . . .
A 1 . . .
===========
Carry 0 . . . This is Sum AND A
Sum 1 . . . This is Sum XOR B, our new total

Suppose	that	we	have	a	4-register	total.		Each	successive	subtrahend	is	the	previous	borrow.	

s8 0 . . . result bits in separate registers
s4 1 . . .
s2 1 . . .
s1 0 . . .

And	 we	 allocate	 temporary	 registers	 for	 carry.	 For	 clarity	 they	 are	 c1,	 c2	 and	 c4.	 Only	 two	
temporaries	are	ever	needed	at	a	1me	so	c1	and	c4	could	be	the	same	physical	loca1on.	

c1 s1 c2 s2 c4 s4 s8

A XOR B A AND B

s1 AND C s1 XOR C s2 XOR c1

s1 AND D s1 XOR D s2 AND c1 s2 XOR c1 c2

s1 AND E s1 XOR E s2 AND c1 s2 XOR c1 s4 XOR c2

s1 AND F s1 XOR F s2 AND c1 s2 XOR c1 s4 XOR c2

s1 AND G s1 XOR G s2 AND c1 s2 XOR c1 s4 XOR c2

s1 AND H s1 XOR H s2 AND c1 s2 XOR c1 s4 AND c2 s4 XOR c2 c4

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 13 20 (c) 2020 Brian McMillin

Decrement (Vertical)

We	have	created	a	condi1onal-binary-increment	algorithm.	 	Now	consider	a	similar	technique	
for	condi1onal-binary-decrement.	

We	have	two	single-bit	binary	values	Total	and	subtrahend	S.	 	We	wish	to	subtract	 (Total	 -	S)	
and	get	two	result	bits,	the	new	Total	and	Borrow.	

Total 0 . . .
S 1 . . .
===========
Borrow 1 . . . This is S AND (NOT Total)
Total 1 . . . This is Total XOR S, our new total

Suppose	that	we	have	a	4-register	total.		Each	successive	subtrahend	is	the	previous	borrow.	

t8 0 . . . result bits in separate registers
t4 1 . . .
t2 1 . . .
t1 0 . . .

And	we	allocate	temporary	registers	for	borrow.	For	clarity	they	are	b1,	b2	and	b4.	Again,	only	
two	temporaries	are	ever	needed	at	a	1me	so	b1	and	b4	could	be	the	same	physical	loca1on.	

Decremen1ng	is	not	as	clean	as	incremen1ng	for	two	reasons.	
• We	cannot	 short-circuit	any	of	 the	opera1ons	 since	even	 the	very	first	decrement	

propagates	to	every	bit	in	the	total.	
• The	genera1on	of	 the	borrow	 requires	 the	negated	version	of	 the	previous	 value,	

hence	the	NOT.	This	is	problema1c	on	typical	hardware.	

Our	increment	requires	6	machine	instruc1ons,	the	decrement	needs	11.	

c1 s1 c2 s2 c4 s4 s8

s1 AND A s1 XOR A s2 AND c1 s2 XOR c1 s4 AND c2 s4 XOR c2 c4

b1 t1 b2 t2 b4 t4 t8

S AND

(NOT t1)

t1 XOR S b1 AND

(NOT t2)

t2 XOR b1 b2 AND

(NOT t4)

t4 XOR b2 b4 AND

(NOT t8)

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 14 20 (c) 2020 Brian McMillin

Two-Input Gates

Looking	at	binary	logic	opera1ons	from	the	standpoint	of	programming	languages	and	physical	
hardware	 it	 is	common	to	have	 logic	opera1ons	performed	on	two	 inputs.	 	There	are	sixteen	
possible	such	opera1ons,	summarized	in	the	following	truth	tables.	

The	opera1ons	marked	with	✔	are	commonly	available	as	single	machine	instruc1ons.	

The	A	AND	(NOT	B)	is,	in	fact,	the	NIMP	or	NOT	Implica1on	logic	opera1on.		No	current	general-
purpose	hardware	implements	the	implica1on	opera1ons	as	single	machine	instruc1ons.			

It	is	likely	that	future	hardware	designed	to	accelerate	the	use	of	data	structures	such	as	we	are	
discussing	would	do	well	to	consider	implemen1ng	some	of	these	addi1onal	instruc1ons.	

Programming Language Limitations
Programming	 languages	are	expected	 to	provide	a	generally	compact	and	 legible	nota1on	 for	
describing	 algorithms	 and	 data	 structures.	 	 The	 nota1on	 should	 be	 easily	 wriUen	 and	
understood	 by	 human	 beings.	 	 It	 should	 also	 convey	 precise	 instruc1ons	 for	 the	 crea1on	 of	
machine	code.	

Unfortunately,	none	of	these	expecta1ons	are	achieved	in	the	present	instance.			

There	is	no	exis1ng	nota1on	that	describes	the	data	structure	that	I	have	just	used.		“Variables”	
whose	value	is	an	ordered	sequence	of	individual	bits	selected	from	separate	machine	words	do	
not	exist	in	the	literature.			

The	 algorithm	 involved,	 even	 in	 the	 brute-force	 instance	 of	 incremen1ng	 such	 a	 “variable”,	
requires	an	understanding	of	number	theory	and	must	be	expressed	in	assembly	language.	

The	fact	that	the	goal	here	is	parallel	(SIMD)	opera1ons	on	many	of	these	“variables”	at	a	1me	
makes	 it	 even	 less	 likely	 that	 an	 exis1ng	 programming	 nota1on	 would	 be	 appropriate	 for	
describing	these	opera1ons.		Or	be	understandable	to	anyone	trying	to	decipher	it.	

Z
E
R
O

A
N
D ?

B N
I

M
P

A X
O
R

O
R

N
O
R

X
N
O
R

~
A

I
M
P

~
B

?

N
A
N
D

O
N
E

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1

0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 15 20 (c) 2020 Brian McMillin

Suppressing	instruc1ons	whose	results	are	never	used	is	something	that	we	would	expect	of	a	
modern	language	compiler.		Of	course,	programs	wriUen	in	assembly	language	are	generally	not	
subject	 to	 this	 type	 of	 op1miza1on.	 	 Likewise	 for	 the	 expected	 register-usage	 op1miza1on		
men1oned	earlier.			

Thus,	we	are	le=	with	the	worst	of	all	worlds.	 	We	must	describe	both	our	data	structures	and	
algorithms	in	the	most	obtuse	way	imaginable.		And	we	can	get	no	automated	assistance	in	the	
memory	alloca1on,	register	assignment	or	code	op1miza1on	processes.	

Working	 with	 these	 algorithms	 will	 therefore	 require	 exhaus1ve	 simula1on,	 test	 cases	 and	
regression	tes1ng.		The	types	of	errors	that	human	beings	are	likely	to	introduce	during	program	
development	 are	 invariably	 obscure	 and	 poten1ally	 impossible	 to	 isolate	 without	 careful	
aUen1on	from	the	earliest	stages	of	design.	

Members	of	a	development	team	must	be	capable	and	confident	when	making	changes	to	the	
so=ware.	 	 And	 some	 mechanism	 must	 exist	 for	 catching	 the	 inevitable	 errors	 as	 quickly	 as	
possible.			

Con1nued	development	and	ongoing	maintenance	of	so=ware	such	as	this	 requires	clear	and	
accessible	 documenta1on	 and	 training	 materials.	 	 All	 team	 members	 must	 be	 able	 to	
understand	the	philosophical	why	behind	an	algorithm,	not	just	the	opaque	and	impenetrable	
how	embodied	in	the	code.	

Ruthless	adherence	to	a	design,	tes1ng	and	documenta1on	methodology	will	be	required.	

Image Data Organization
Our	 goal	 is	 to	 use	 these	 techniques	 to	 effec1vely	 perform	 parallel	 convolu1ons	 on	 images	
presented	as	sequen1al	rows	of	bits.	 	Suppose	we	have	a	few	rows	from	an	image	in	machine	
words	like	this:	

V V V V V V V V . . .
W W W W W W W W . . . An example “8 out of 3x3” filter
X X X X X X X X . . . highlighted in an input image.
Y Y Y Y Y Y Y Y . . .
Z Z Z Z Z Z Z Z . . .

We	would	like	to	arrange	to	be	able	to	make	use	of	these	values	as	directly	as	possible	as	input	
to	the	previous	bitwise	summa1on	algorithm.	 	We	can	achieve	the	desired	configura1on	using	
only	LOAD,	and	SHIFT	instruc1ons.		Our	goal	for	input	registers	is	to	look	like:	

A W W W W W W W . . . Versions of Row W
B W W W W W W . . .
C W W W W W . . .
D X X X X X X X . . . Versions of Row X
E X X X X X . . .
F Y Y Y Y Y Y Y . . . Versions of Row Y

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 16 20 (c) 2020 Brian McMillin

G Y Y Y Y Y Y . . .
H Y Y Y Y Y . . .

By	storing	slightly	shi=ed	version	of	our	three	rows	of	 input	data	we	have	aligned	the	desired	
pixels	 into	bitwise	 columns.	 	 The	 convolu1on	opera1ons	 (in	 our	 example:	 bit	 summing)	 then	
proceed	in	parallel.	

Optimization (redux)

The	designa1on	of	eight	input	registers	A	-	H	is	only	a	conceptual	convenience.	 	Perusal	of	the	
bit-summing	 algorithm	 reveals	 that	 each	 “register”	 is	 used	 in	 a	 pair	 of	 instruc1ons	 and	 then	
never	accessed	again.		And	they	are	accessed	in	order	from	A	to	H.		Since	(for	example)	A,	B	and	
C	are	just	variously	shi=ed	versions	of	the	image	data	that	we	refer	to	as	W,	it	turns	out	that	we	
do	not	really	need	all	these	registers.		Likewise	for	all	the	other	things	referred	to	as	Input.	

It	turns	out	that	for	a	real-world	implementa1on	we	need	only	a	single	“Input”	register	which	is	
loaded	from	the	image	data	in	main	memory	and	manipulated	as	needed	within	the	summing	
algorithm.	

Our	64	filter	output	sums	will	reside	in	four	actual	result	registers.	

Thus,	 we	 are	 able	 to	 fully	 implement	 a	 streaming	 version	 of	 this	 por1on	 of	 the	 image	
convolu1on.		Every	input	image	row	will	be	accessed	three	1mes	in	quick	succession.		Scanning	
from	top	to	boUom,	the	rows	will	never	be	needed	again.		

Edge Effects (redux)

As	noted	in	the	earlier	discussion	of	Image	Boundaries,	the	boundary	of	the	image	will	generate	
ar1facts	in	the	convolved	output.		Specifically,	the	first	and	last	bit	of	each	image	row	will	not	be	
technically	correct.	

In	our	example	we	are	able	to	achieve	 full	accuracy	 for	61	of	 the	64	filters.	 	The	two-bit-shi=	
opera1ons	would	be	expected	to	rotate	in	pixels	from	the	next	word	in	each	image	row.	 	If	this	
addi1onal	bit	rota1on	was	included	we	would	generate	correct	results	for	all	but	the	first	and	
last	filter:	62	out	of	a	possible	64.	

As	men1oned,	 it	 may	 turn	 out	 that	 the	 significance	 of	 ar1facts	 such	 as	 these	may	 be	 small	
enough	that	they	can	be	safely	ignored.		The	Neural	Network	may	simply	“learn	its	way	around	
them”,	just	as	a	person	completely	ignores	the	mun1n	bars	between	the	panes	in	a	window.	

Binary Convolution
Given	 these	 out-of-the-box	 data	 structures	 and	 algorithms,	 we	 can	 now	 turn	 to	 the	 actual	
Binary	Convolu1on.	

Our	 specific	 goal	 is	 to	 produce	 a	 single-bit	 output	 pixel	 based	 on	 9	 input	 pixels	 and	 9	 filter	
coefficients.	 	 Our	 image	 pixels	 will	 be	 binary	 values	 taken	 from	 the	 set	 {0,	 1}.	 	 Our	 filter	

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 17 20 (c) 2020 Brian McMillin

coefficients	will	be	taken	from	the	set	{-1,	+1}	but	represented	by	the	binary	values	{0,	1}.	We	
will	compute	the	sum	of	9	products;	the	result	will	be	the	sign	of	that	sum.			

The	truth	table	for	each	of	the	products	that	we	will	compute	is:	

TBD	

Deep Neural Networks

TBD	

Inference

Image Pixel
0

Image Pixel
1

Filter = 0
(meaning -1)

0 -1
(decrement sum)

Filter = 1
(meaning +1)

0 +1
(increment sum)

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 18 20 (c) 2020 Brian McMillin

TBD	

Training

TBD	

Hardware Considerations
The	bulk	of	this	paper	argues	in	favor	of	simplified	data	and	algorithm	requirements.		The	use	of	
single-bit	 image	 and	 filter	 elements	 allows	 for	 the	 elimina1on	 of	 floa1ng	 point	 opera1ons		
Parallel	opera1ons	on	binary	data	can	be	accomplished	by	a	subset	of	the	hardware	found	on	a	
typical	CPU.	 	Clever	data	organiza1on	and	algorithm	design	minimizes	the	limita1ons	posed	by	
memory	 architecture	 and	 bandwidth.	 	 The	 elimina1on	 of	 GPU	 requirements	 reduces	
complexity,	power	and	thermal	issues.		

A	Bad	Idea,	replicated	1024	1mes	and	clocked	
at	3GHz	does	not	become	a	Good	Idea.	
It	may	solve	the	target	problem,	though.	

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 19 20 (c) 2020 Brian McMillin

TBD	

Summary
This	document	has	presented	alterna1ve	algorithms	for	applica1on	to	Binary	Convolu1on	using	
CPU	hardware.	

TBD	

Bitwise Convolution DRAFT 0411
CONFIDENTIAL - Page of 20 20 (c) 2020 Brian McMillin

	Abstract
	Table of Contents
	Convolution
	Filter Shapes
	Concerning Image Boundaries
	Stochastic Processing
	Reductio ad Absurdum
	Input Preparation
	Memory Addressing
	Serialization
	Strides
	Non-Integer Strides
	Data Structures
	Bit Counting (Horizontal)
	Bit Counting (Vertical)
	Increment (Vertical)
	Decrement (Vertical)
	Two-Input Gates
	Programming Language Limitations
	Image Data Organization
	Optimization (redux)
	Edge Effects (redux)
	Binary Convolution
	Deep Neural Networks
	Inference
	Training
	Hardware Considerations
	Summary

